UK Technology Development for Spaceborne Atmospheric Limb-Sounding Missions

Brian Moyna (RAL)

Outline

• Introduction: limb-sounding technique

RAL Space

- ALISS
- MM-wave receiver technology
- SHIRM
- Complete breadboard radiometer
- WBS-II
- Deployment on JFJ
- Micro FTS
- Airborne Demonstration StratoClim 2016
- Summary

Limb Sounding Technique

 Limb sounding gives much higher vertical resolution than nadir sounding, but its line of sight is often obstructed by clouds below the mid-troposphere.

Limb Sounding Technique

- Limb sounding gives much higher vertical resolution than nadir sounding, but its line of sight is often obstructed by clouds below the mid-troposphere.
- The atmospheric layer at the tangent point contributes most of the atmospheric signal.
- The tangent point of the line of sight moves towards the observer for higher scan angles.

ALiSS:

Atmospheric Limb Sounding Small satellite

- ALiSS will provide high vertical and horizontal resolution measurements of the Upper Troposphere / Lower Stratosphere region (UT/LS) to specifically address the looming gap in limb profiling data for science and, in near real time, for operational
 - systems

Instrument	Mass	Power	
CATS	25 kg	20W	
STEAMR	65 kg (Mini- STEAMR)	150W (Mini- STEAMR)	
SHOW (optional)	25 kg	20W	

- A unique contribution of STEAMR will be to extend the ALiSS measurement range into the UT, including convective regions important to troposphere-stratosphere exchange e.g. the Asian Monsoon region, where cirrus clouds are ubiquitous
 - Clouds opaque to IR, transparent at mm-wave
 - Sideband-separating SHIRM mixers, a high priority option from the PREMIER study, will improve the accuracy of trace gas retrievals in the UT by minimizing spectral confusion and allowing the spectral dependence of *continua* to be determined

TRIPLER

OSCILLATOR

RAL Space

SCHOTTKY W BAND W BAND

POWER AMP

DOUBLER

© 2014 RAL Space

© 2014 RAL Space

Output Frequency (GHz)

RAL Space

W-Band Power amplifier chip packaged at RAL

Saturated Output Power

RAL Space

RAL Space

RAL 160-180 GHz Schottky Doubler

RAL Space

© 2014 RAL Space

SHIRM: Sub-Harmonic Image-Rejection Mixer

- SHIRM Optimised performance
 - Sideband rejection: 15 dB min. (>20 dB nom.), IF BW = 2-14 GHz
 - SSB receiver noise temperature: ~3000 K
- Devices employ planar Schottky diode technology from RAL Space

© 2014 RAL Space

SHIRM development at RAL, Astrium, supported by CEOI

SCHOTTKY	W BAND	W BAND	KA BAND
DOUBLER	POWER AMP	TRIPLER	OSCILLATOR

RAL Space

Technology – Calibration Targets

245mm diameter mg-alloy-cored calibration load for ISMAR airborne radiometer

- Wideband performance
 - Typically better than 50dB return loss from 100GHz to at least 700GHz
 - Can be optimised for other frequency ranges

- Metal-cored black body calibration loads for radiometer calibration:
 - Ground-based (ALMA)
 - Airborne (MARSCHALS, ISMAR)
 - Space
 - Lightweight aluminium or magnesium alloy core
 - Wide temperature range 77-370k

Return Loss of ALMA prototype load at 600GHz

Breadboard Sideband-Separating RAI High Resolution Radiometer (CEOI 5th Call)

- Development of total-power radiometer comprising
 - 340 GHz sideband-separating receiver
 - 2x WBS II units providing 4 GHz bandwidth

Wideband Spectrometer II STAR Dundee

- Two ADCs sampling at 3 Gsamples/s
 - I & Q sampling
 - Resulting signal bandwidth > 2 GHz
- Custom Fast Fourier Transform (FFT) chip design
 - Windowing
 - 2048 point complex FFT at 3 Gsamples/s
 - ~ 1.5 MHz resolution
 - Power detection and accumulation
 - Zero dead-time between data acquisitions

Wideband Spectrometer II

Dimensions L= 165 mm W= 220 mm H= 30 mm

Signal fed into I input, Q input = 0 Averaged for 10,000 spectra Primary signal at 600 MHz (spurs at ~200, 400 & 800) Clock breakthrough is low (@ 100 MHz)

RAL Space Instrument CAD Model USB-to-serial hub **Bias & Control** Electronics IQ down-conversion Ref. Osc. WBS Eurotherm USB-3101 **USB-TEMP** Hot cal. target 0 0 Motor. Power supply Cal. mirror Synthesizer **SHIRM Receiver** Sub-reflector

Complete Instrument

Field-Test of SHIRM Receiver at Jungfraujoch (3.5 km)

© 2014 RAL Space

The microFTS: RAL Miniature Fourier Transform Spectrometer.

- Low mass, low power, imaging Fourier Transform Spectrometer (FTS) with no moving components
- Spectral performance:
 2 to 20µm @ 16cm⁻¹ FWHM
 200 to 1100nm @ 0.5nm FWHM
- •Low mass spectrometer: 1.56kg
- •Compact: 350 x 300 x 50mm
- •Low power:0.5mW (average)

The microFTS operational principle

MicroFTS spectrometer

The microFTS is limited by the detection limits of the detector array used. The microFTS has been demonstrated in the UV, Visible, NIR, Mid and Far IR.

Single Interferogram Line

UV Transmission Spectra – H2O

Technology Development: 2D Imaging Spectrometer

Imaging development work links the imaging capability with an optically encoded scan mirror

Airborne demonstration: StratoClim 2016

- STEAMR demonstration from M55 "Geophysica"
- MARSCHALS upgrade:
 - SHIRM receiver with WBS-III spectrometer (see STAR Dundee Poster!)

- Mission opportunity (ALiSS) for combined IR/mmwave limb sounders
- UK well-placed to provide mm-wave receiver hardware
- Novel Micro FTS would be of interest as a complete UK instrument contribution
- Airborne demonstration of sideband-separating receiver, Wideband FFT spectrometer (and optionally Micro FTS) in StratoClim 2016

• brian.moyna@stfc.ac.uk